Algebrability and nowhere Gevrey differentiability
نویسندگان
چکیده
منابع مشابه
Nowhere Weak Differentiability of the Pettis Integral
For an arbitrary in nite-dimensional Banach space X, we construct examples of strongly-measurable X-valued Pettis integrable functions whose indefinite Pettis integrals are nowhere weakly di erentiable; thus, for these functions the Lebesgue Di erentiation Theorem fails rather spectacularly. We also relate the degree of nondi erentiability of the inde nite Pettis integral to the cotype of X, fr...
متن کاملFractional differentiability of nowhere differentiable functions and dimensions.
Weierstrass's everywhere continuous but nowhere differentiable function is shown to be locally continuously fractionally differentiable everywhere for all orders below the "critical order" 2-s and not so for orders between 2-s and 1, where s, 1<s<2 is the box dimension of the graph of the function. This observation is consolidated in the general result showing a direct connection between local ...
متن کاملBaire Category and Nowhere Differentiability for Feasible Real Functions
A notion of resource-bounded Baire category is developed for the class PC[0,1] of all polynomial-time computable real-valued functions on the unit interval. The meager subsets of PC[0,1] are characterized in terms of resource-bounded Banach-Mazur games. This characterization is used to prove that, in the sense of Baire category, almost every function in PC[0,1] is nowhere differentiable. This i...
متن کاملSimple Proofs of Nowhere-differentiability for Weierstrass’s Function and Cases of Slow Growth
Using a few basics from integration theory, a short proof of nowhere-differentiability of Weierstrass functions is given. Restated in terms of the Fourier transformation, the method consists in principle of a second microlocalisation, which is used to derive two general results on existence of nowhere differentiable functions. Examples are given in which the frequencies are of polynomial growth...
متن کاملFréchet directional differentiability and Fréchet differentiability
Zaj́ıček has recently shown that for a lower semi-continuous real-valued function on an Asplund space, the set of points where the function is Fréchet subdifferentiable but not Fréchet differentiable is first category. We introduce another variant of Fréchet differentiability, called Fréchet directional differentiability, and show that for any realvalued function on a normed linear space, the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2014
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-014-1104-1